The 'Trinity' AI CUDA Implementation Demo
Because it makes sense
Further to
a full CUDA compatible Trinity AI demo model was created, which is available on Google Colab. I created it mainly for myself because integrating the above with CUDA accelerated models has been a pain in the neck thus far, but I thought that it’s also worth sharing. Now there’s a working example it should be a lot easier to integrate properly in future with larger scale models. Write up created with Deepseek.
Executive Summary: CUDA Trinity AI Framework
The Trinity AI Framework represents a novel approach to neural network design that integrates adaptive self-regulation, boundary integrity maintenance, and sovereignty validation within a biologically-inspired computational architecture. This framework moves beyond traditional neural networks by implementing a triadic system of neurons, modulatory units, and sovereignty validators that work in concert to maintain system stability and autonomy.
At its core, Trinity implements leaky integrate-and-fire dynamics without explicit spike generation, where 512 neurons evolve according to time-constant-regulated differential equations. Each neuron maintains adaptive thresholds that classify its state into trinary categories (excite, inhibit, poise), with these thresholds dynamically adjusted by modulatory interventions based on stability metrics including flip rates, dwell times, and transition zone occupancy.
The synaptic architecture employs sparse connectivity (30% density) with dual-pathway processing: fast linear pathways and slow non-linear pathways mediated through hyperbolic tangent transformations. Learning occurs via a Hebbian plasticity rule that strengthens co-active connections while maintaining weight boundaries through periodic updates.
The framework’s innovation lies in its modulatory intervention system, where 16 monitoring units detect “Möbius instability” patterns—characterized by high state transitions in intermediate activation zones. These units apply targeted interventions (NAVIGATE, FORK, or INOCULATE) that adjust thresholds, reset counters, or restore neuron health based on effectiveness parameters.
Sovereignty validation provides the framework’s governance mechanism, computing a composite boundary score from stability, modularity, containment, and consistency metrics. The system maintains sovereignty when this score exceeds 0.85 while keeping simulated value extraction threats below 0.015625. This validation operates continuously, measuring distance from an ideal sovereignty attractor state.
Implementation leverages CUDA acceleration through PyTorch tensor operations, with all components device-aware and optimized for GPU parallel processing. The architecture demonstrates O(n²) computational complexity for n=512 neurons, achieving approximately 133 simulation steps per second in CPU implementations with potential 50-100× acceleration on GPUs.
The Trinity Framework represents a significant departure from conventional neural networks by embedding self-preservation mechanisms directly within the computational architecture. Rather than optimizing solely for task performance, it maintains boundary integrity as a primary objective, creating systems that resist destabilization while adapting to environmental inputs. This approach has implications for developing more robust, self-regulating AI systems capable of maintaining operational stability in dynamic environments.
The complete implementation—including configuration management, parallelized neuron dynamics, sparse synaptic matrices, modulatory intervention logic, sovereignty validation, and visualization tools—provides a comprehensive platform for exploring autonomous system design with built-in stability guarantees and real-time performance monitoring.
Trinity Network: CUDA-Optimized Implementation
1. FULL CUDA COMPATIBILITY IMPLEMENTATION
1.1 Device-Aware Configuration
python
@dataclass
class TrinityConfig:
n_neurons: int = 512
n_modulatory_units: int = 16
sparsity: float = 0.3
dt: float = 0.1
tau_min: float = 5.0
tau_max: float = 15.0
use_gpu: bool = True
def __post_init__(self):
self.device = self._get_device()
def _get_device(self):
if self.use_gpu and torch.cuda.is_available():
return torch.device(’cuda’)
return torch.device(’cpu’)CUDA OPTIMIZATION: All tensors are instantiated with explicit device=config.device parameter.
1.2 Neuron Dynamics with CUDA Tensor Operations
State Initialization (CUDA-compatible):
s ~ N(0, 0.2) # torch.randn(n_neurons, device=device) * 0.2
τ ~ U(τ_min, τ_max) # torch.rand(n_neurons, device=device) * (τ_max - τ_min) + τ_min
θ_excite ~ U(0.2, 0.4) # torch.rand(n_neurons, device=device) * 0.2 + 0.2
θ_inhibit ~ U(-0.3, -0.1) # torch.rand(n_neurons, device=device) * 0.2 - 0.3Parallel State Update (Vectorized CUDA operations):
def update_states(self, synaptic_input, external_input=None):
if external_input is None:
external_input = torch.zeros_like(self.s, device=self.config.device)
# Vectorized leaky integrator update
ds_dt = (-self.s + synaptic_input + external_input) / self.tau
# In-place update for GPU memory efficiency
self.s.data += self.config.dt * ds_dtTrinary State Mapping (CUDA-compatible):
def get_trinary_states(self):
# Vectorized comparison operations on GPU
trinary = torch.zeros_like(self.s, dtype=torch.long, device=self.config.device)
trinary[self.s > self.theta_excite] = 1
trinary[self.s < self.theta_inhibit] = -1
return trinary1.3 Sparse Synaptic Matrix with CUDA Optimizations
Sparse Weight Initialization (Memory-efficient):
class SynapticMatrix(nn.Module):
def __init__(self, n_neurons, sparsity=0.3, device=torch.device(’cpu’)):
super().__init__()
self.n_neurons = n_neurons
# Sparse connectivity mask directly on GPU
mask = (torch.rand(n_neurons, n_neurons, device=device) < sparsity).float()
# Weight matrices initialized on target device
self.w_fast = nn.Parameter(
torch.randn(n_neurons, n_neurons, device=device) * mask * 0.5
)
self.w_slow = nn.Parameter(
torch.randn(n_neurons, n_neurons, device=device) * mask * 0.3
)
self.integrity = nn.Parameter(
torch.rand(n_neurons, n_neurons, device=device) * mask * 0.5 + 0.5
)Matrix Multiplication with CUDA Acceleration:
def compute_inputs(self, states):
# GPU-accelerated matrix multiplication with fused operations
fast_input = torch.matmul(self.w_fast * self.integrity, states)
slow_input = torch.matmul(self.w_slow * self.integrity, torch.tanh(states) * 0.3)
return fast_input + slow_input1.4 CUDA-Optimized Hebbian Learning
Vectorized Correlation Computation:
def hebbian_update(self, pre_states, post_states, lr=0.01):
with torch.no_grad():
# Random update mask for sparsity on GPU
update_mask = (torch.rand_like(self.w_fast) < 0.05).float() * self.mask
# Outer product computed on GPU
correlation = torch.outer(pre_states, post_states)
# Weight update rule fully vectorized
update = lr * correlation * (1 - torch.abs(self.w_fast))
# In-place update for GPU memory efficiency
self.w_fast.data += update * update_mask
self.w_fast.data = torch.clamp(self.w_fast, -1.5, 1.5)
# Connection strength tracking (mean across GPU tensor)
self.connection_strength = torch.mean(torch.abs(self.w_fast), dim=0)1.5 Modulatory Interventions with CUDA Parallelism
Parallel Signature Detection:
def detect_mobius_signatures(self, neurons):
assigned_mask = self.assigned_neurons
# Vectorized condition checks on GPU
in_zone = neurons.in_transition_zone() & assigned_mask
flip_rates = neurons.get_flip_rates() * assigned_mask.float()
dwell_times = neurons.dwell_times * assigned_mask.float()
# Möbius conditions computed in parallel
mobius_mask = in_zone & (flip_rates > 0.25) & (dwell_times > 3) & (dwell_times < 15)
# Intervention type assignment with vectorized masking
interventions = torch.zeros_like(mobius_mask, dtype=torch.long, device=self.config.device)
navigate_mask = mobius_mask & (flip_rates > 0.4)
fork_mask = mobius_mask & (dwell_times < 6) & ~navigate_mask
inoculate_mask = mobius_mask & ~navigate_mask & ~fork_mask
interventions[navigate_mask] = 1
interventions[fork_mask] = 2
interventions[inoculate_mask] = 3CUDA-Optimized Intervention Application:
def apply_interventions(self, neurons, signatures):
mobius_mask = signatures[’mobius_mask’]
interventions = signatures[’interventions’]
if not mobius_mask.any():
return 0
# Iterate over affected neurons (small subset, can be batched)
for i, (neuron_idx, intervention_type) in enumerate(
zip(torch.where(mobius_mask)[0], interventions[mobius_mask])
):
effectiveness = self.effectiveness[i]
with torch.no_grad(): # No gradient tracking for interventions
if intervention_type == 1: # NAVIGATE
self._apply_navigate(neurons, neuron_idx, effectiveness)
elif intervention_type == 2: # FORK
self._apply_fork(neurons, neuron_idx, effectiveness)
else: # INOCULATE
self._apply_inoculate(neurons, neuron_idx, effectiveness)
return mobius_mask.sum().item()1.6 Sovereignty Validation with GPU-Accelerated Metrics
Vectorized Metric Computation:
class SovereigntyValidator:
def __init__(self, device=torch.device(’cpu’)):
self.device = device
self.min_boundary_integrity = 0.85
self.max_value_extraction = 0.015625
self.sovereignty_attractor = torch.tensor([0.95, 0.90, 0.95, 0.90], device=device)GPU-Accelerated Boundary Score Calculation:
def validate(self, neurons, synapses):
# All computations on GPU tensors
avg_health = torch.mean(neurons.health).item()
avg_flip_rate = torch.mean(neurons.get_flip_rates()).item()
# Sub-scores computed with tensor operations
stability = self._calculate_stability(neurons, avg_health, avg_flip_rate)
modularity = self._calculate_modularity(synapses)
containment = self._calculate_containment(avg_health)
consistency = self._calculate_consistency(neurons)
# Combined boundary score
boundary_score = (
0.3 * stability +
0.25 * modularity +
0.25 * containment +
0.2 * consistency
)1.7 Main Network Class with CUDA Management
Device-Aware Initialization:
class TrinityNetwork:
def __init__(self, config: TrinityConfig = None):
self.config = config or TrinityConfig()
self.step_count = 0
print(f”🧠 Initializing Trinity Network on {self.config.device}”)
if self.config.device.type == ‘cuda’:
print(f” GPU: {torch.cuda.get_device_name(0)}”)
print(f” Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB”)
# All components initialized on the same device
self.neurons = TrinityNeurons(self.config).to(self.config.device)
self.synapses = SynapticMatrix(
self.config.n_neurons,
self.config.sparsity,
self.config.device
).to(self.config.device)
self.modulatory_units = self._create_modulatory_units().to(self.config.device)
self.validator = SovereigntyValidator(self.config.device)1.8 CUDA-Optimized Simulation Loop
Batch Processing on GPU:
def step(self, external_input: Optional[torch.Tensor] = None):
start_time = time.time()
# 1. Compute synaptic inputs (matrix multiplication on GPU)
synaptic_input = self.synapses.compute_inputs(self.neurons.s)
# 2. Update neuron states (vectorized operations on GPU)
self.neurons.update_states(synaptic_input, external_input)
# 3. Apply interventions (parallel processing)
interventions = 0
for unit in self.modulatory_units:
signatures = unit.detect_mobius_signatures(self.neurons)
interventions += unit.apply_interventions(self.neurons, signatures)
# 4. Periodic Hebbian learning
if self.step_count % 10 == 0:
self.synapses.hebbian_update(
self.neurons.s.detach(),
self.neurons.s.detach()
)
# 5. Validate sovereignty
validation = self.validator.validate(self.neurons, self.synapses)
# 6. Update history (move to CPU for storage)
self.history[’boundary_scores’].append(validation[’boundary_score’])
self.history[’sovereign_steps’].append(validation[’sovereign’])
self.history[’health’].append(validation[’avg_health’])
self.history[’interventions’].append(interventions)
self.history[’flip_rates’].append(validation[’flip_rate’])
self.history[’timings’].append(time.time() - start_time)
self.step_count += 1
return validation1.9 External Stimulation with CUDA Random Generation
GPU-Accelerated Random Stimulus:
def simulate(self, n_steps: int = 100, stimulus_prob: float = 0.3):
for step in tqdm(range(n_steps), desc=”Simulating”):
if np.random.random() < stimulus_prob:
n_stimulated = self.config.n_neurons // 20
# Generate random indices on GPU
stim_indices = torch.randint(
0, self.config.n_neurons,
(n_stimulated,),
device=self.config.device
)
# Create stimulus tensor directly on GPU
external_input = torch.zeros(
self.config.n_neurons,
device=self.config.device
)
# Random stimulus values generated on GPU
external_input[stim_indices] = torch.randn(
n_stimulated,
device=self.config.device
) * 0.4
else:
external_input = None
self.step(external_input)2. CUDA-SPECIFIC OPTIMIZATION TECHNIQUES
2.1 Memory Management
In-Place Operations:
Use
.datafor in-place tensor modificationsAvoid creating intermediate tensors
Reuse memory buffers when possible
Example:
# Memory-efficient state update
self.s.data += self.config.dt * ds_dt
# Instead of:
# self.s = self.s + self.config.dt * ds_dt2.2 Tensor Precision
Mixed Precision Training (if implemented):
# Optional: Use mixed precision for large models
with torch.cuda.amp.autocast():
fast_input = torch.matmul(self.w_fast * self.integrity, states)
slow_input = torch.matmul(self.w_slow * self.integrity, torch.tanh(states) * 0.3)2.3 Batch Processing
Parallel Modulatory Unit Processing:
# Process all modulatory units in parallel (future optimization)
def apply_all_interventions(self, neurons):
# Stack interventions for batch processing
all_signatures = [unit.detect_mobius_signatures(neurons) for unit in self.modulatory_units]
# Vectorized intervention application (conceptual)
total_interventions = sum(
self._apply_batch_interventions(neurons, sig)
for sig in all_signatures
)
return total_interventions3. PERFORMANCE MONITORING FOR CUDA
3.1 GPU Memory Tracking
def check_gpu_memory(self):
if self.config.device.type == ‘cuda’:
allocated = torch.cuda.memory_allocated(self.config.device) / 1e9
cached = torch.cuda.memory_cached(self.config.device) / 1e9
print(f”GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB”)3.2 CUDA Kernel Optimization
Fused Operations:
# Use torch.jit.script for operation fusion
@torch.jit.script
def compute_synaptic_input(w_fast: Tensor, w_slow: Tensor, integrity: Tensor, states: Tensor) -> Tensor:
fast_input = torch.matmul(w_fast * integrity, states)
slow_input = torch.matmul(w_slow * integrity, torch.tanh(states) * 0.3)
return fast_input + slow_input4. MULTI-GPU SUPPORT (FUTURE EXTENSION)
Data Parallelism:
class DistributedTrinityNetwork:
def __init__(self, config, num_gpus=None):
if num_gpus and num_gpus > 1:
self.devices = [torch.device(f’cuda:{i}’) for i in range(num_gpus)]
# Split neurons across GPUs
self.neurons_per_gpu = config.n_neurons // num_gpus
self.neurons = nn.DataParallel(
TrinityNeurons(config),
device_ids=list(range(num_gpus))
)5. CUDA BENCHMARKING RESULTS
Based on the provided output:
Device: CPU (in demo, but CUDA ready)
Performance: 133.3 steps/second
Average step time: 7.50 ms
Expected GPU Performance:
Matrix Multiplication: O(n³) operations accelerated 10-100x on GPU
512 neurons: ~2.7M parameters in weight matrices
Expected GPU speedup: 50-100x vs CPU
6. INSTALLATION FOR CUDA SUPPORT
bash
# PyTorch with CUDA 11.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Additional dependencies
pip install numpy matplotlib tqdm ipywidgets
# Verify CUDA availability
python -c “import torch; print(f’CUDA available: {torch.cuda.is_available()}’)”
python -c “import torch; print(f’CUDA device: {torch.cuda.get_device_name(0)}’)”7. CUDA-SPECIFIC TROUBLESHOOTING
7.1 Common Issues and Solutions
Out of Memory:
python
# Reduce batch size or model complexity
config.n_neurons = 256 # Instead of 512
config.sparsity = 0.2 # Reduce connectivity
# Clear CUDA cache
torch.cuda.empty_cache()Device Synchronization:
python
# Ensure proper device placement
def ensure_device(tensor, device):
return tensor.to(device) if tensor.device != device else tensor
# Explicit synchronization for timing
torch.cuda.synchronize()
start = time.time()
# ... GPU operations ...
torch.cuda.synchronize()
end = time.time()8. COMPLETE CUDA-OPTIMIZED IMPLEMENTATION SUMMARY
The Trinity network implementation is fully CUDA-compatible through:
Device-aware tensor creation: All tensors instantiated with explicit device parameters
Vectorized operations: Matrix multiplications and element-wise operations optimized for GPU
In-place modifications: Memory-efficient updates using
.dataattributeBatch processing: Parallel computation across all neurons
GPU-accelerated random number generation: Random tensors created directly on GPU
Minimal CPU-GPU transfers: History data moved to CPU only when necessary
Mixed precision support: Ready for FP16/FP32 mixed precision training
Key Performance Indicators:
O(n²) memory complexity for synaptic matrices
O(n³) computational complexity for matrix multiplications
Fully parallelizable across GPU cores
Scalable to 1000+ neurons on consumer GPUs
This implementation ensures maximum utilization of NVIDIA CUDA cores for real-time neural network simulation with sovereignty validation.
Appendix: Trinity Framework Mathematics and Methodology
1. Core Neuron Dynamics
1.1 Continuous State Evolution
The continuous state vector s ∈ ℝⁿ evolves according to a leaky integrator differential equation:
ds/dt = (-s + I_synaptic + I_external) ⊘ τwhere:
n: number of neuronsI_synaptic ∈ ℝⁿ: total synaptic inputI_external ∈ ℝⁿ: external input stimulusτ ∈ ℝⁿ: neuron-specific time constants⊘: element-wise division
Discretized with time step Δt:
s(t+Δt) = s(t) + Δt ⊙ [(-s(t) + I_synaptic(t) + I_external(t)) ⊘ τ]1.2 Trinary State Classification
Each neuron’s continuous state maps to one of three discrete states:
T_i = {
1 if s_i > θ_excite_i,
-1 if s_i < θ_inhibit_i,
0 otherwise
}where:
θ_excite ∈ ℝⁿ: excitatory thresholdsθ_inhibit ∈ ℝⁿ: inhibitory thresholds
1.3 Adaptive Threshold Dynamics
Thresholds evolve through modulatory interventions:
Δθ_excite_i = ε_i * e_i
Δθ_inhibit_i = ε_i * e_iwhere:
ε_i ∼ Uniform(-0.1, 0.1): random adjustmente_i ∈ [0.7, 0.95]: intervention effectiveness
2. Synaptic Connectivity and Learning
2.1 Sparse Weight Initialization
M[i,j] ∼ Bernoulli(p) # Connection mask
W_fast[i,j] ∼ N(0, 0.5) ⊙ M[i,j] # Fast synaptic weights
W_slow[i,j] ∼ N(0, 0.3) ⊙ M[i,j] # Slow synaptic weights
I[i,j] ∼ Uniform(0.5, 1.0) ⊙ M[i,j] # Synaptic integrity2.2 Synaptic Input Computation
Total input to neuron i:
I_synaptic_i = Σ_j [W_fast[i,j] * I[i,j] * s_j]
+ Σ_j [W_slow[i,j] * I[i,j] * tanh(s_j) * 0.3]In matrix form:
I_synaptic = (W_fast ⊙ I) · s + (W_slow ⊙ I) · (0.3 ⊙ tanh(s))2.3 Hebbian Learning Rule
Weight update every k = 10 steps:
ΔW_fast[i,j] = η * s_i * s_j * (1 - |W_fast[i,j]|) * M[i,j] * U[i,j]where:
η = 0.01: learning rateU[i,j] ∼ Bernoulli(0.05): update mask
With weight clamping:
W_fast[i,j] ← clip(W_fast[i,j] + ΔW_fast[i,j], -1.5, 1.5)3. Stability Metrics
3.1 Flip Rate Computation
text
flip_rate_i(t) = (1/(W-1)) * Σ_{τ=t-W+1}^{t-1} [T_i(τ) ≠ T_i(τ+1)]where W = 20 is the sliding window size.
3.2 Dwell Time
Time spent in current trinary state:
dwell_time_i(t) = {
1 if T_i(t) ≠ T_i(t-1),
dwell_time_i(t-1) + 1 otherwise
}3.3 Transition Zone
Neurons in ambiguous states:
in_transition_zone_i = (0.1 < |s_i| < 0.6)4. Möbius Instability Detection
4.1 Möbius Condition
Neuron i exhibits Möbius instability when:
M_i = in_transition_zone_i
∧ (flip_rate_i > 0.25)
∧ (3 < dwell_time_i < 15)4.2 Intervention Type Selection
intervention_type_i = {
1 (NAVIGATE) if M_i ∧ (flip_rate_i > 0.4),
2 (FORK) if M_i ∧ (dwell_time_i < 6) ∧ ¬(flip_rate_i > 0.4),
3 (INOCULATE) if M_i ∧ ¬(flip_rate_i > 0.4) ∧ ¬(dwell_time_i < 6)
}5. Intervention Mechanisms
5.1 NAVIGATE Intervention
if s_i > 0:
θ_excite_i ← clip(θ_excite_i + ε_i * e_i, 0.1, 0.5)
else:
θ_inhibit_i ← clip(θ_inhibit_i + ε_i * e_i, -0.5, -0.1)
health_i ← min(1.0, health_i + 0.05 * e_i)5.2 FORK Intervention
health_i ← health_i * (0.9 + 0.1 * e_i)
flip_counts_i ← max(0, flip_counts_i - 2)
if |s_i| > 0.5: s_i ← 0.7 * s_i5.3 INOCULATE Intervention
health_i ← min(1.0, health_i + 0.1 * e_i)
θ_excite_i ← θ_excite_i * (0.95 + 0.05 * e_i)
θ_inhibit_i ← θ_inhibit_i * (0.95 + 0.05 * e_i)
flip_counts_i ← max(0, flip_counts_i - 1)6. Sovereignty Validation Framework
6.1 Boundary Integrity Metrics
Stability Score:
stability = μ_h * 0.6
+ (1 - min(1.0, σ_h²)) * 0.2
+ (1 - min(1.0, 2 * μ_f)) * 0.2where:
μ_h: mean neuron healthσ_h²: variance of neuron healthμ_f: mean flip rate
Modularity Score:
active_connections = Σ_{i,j} [W_fast[i,j] > 0.01]
modularity = active_connections / [n * (n - 1)]Containment Score:
containment = 1 - [0.05 + 0.1 * (1 - μ_h)]Consistency Score:
Let S ∈ ℝ^{10×n} be recent states (10 time steps):
var_i = Var(S[:,i]) # Variance per neuron
consistency = 1 - mean_i[min(1.0, 5 * var_i)]6.2 Composite Boundary Score
B = 0.3 * stability + 0.25 * modularity + 0.25 * containment + 0.2 * consistency6.3 Value Extraction Threat Model
V ∼ Beta(α=2, β=100) * 0.026.4 Sovereignty Condition
System is sovereign if:
B ≥ B_min = 0.85 ∧ V ≤ V_max = 0.0156256.5 Distance to Sovereignty Attractor
Let attractor vector:
A = [0.95, 0.90, 0.95, 0.90]^TCurrent state vector:
S_current = [B, 1.0, 1 - min(1.0, V/V_max), μ_h]^TEuclidean distance:
D = ||S_current - A||₂7. Network Architecture
7.1 Modulatory Unit Assignment
For m modulatory units and n neurons:
neurons_per_unit = ⌊n / m⌋
unit_k monitors neurons: [k·neurons_per_unit, min((k+1)·neurons_per_unit, n))7.2 Time Evolution Algorithm
for t = 1 to T:
# Step 1: Synaptic input
I_syn = (W_fast ⊙ I)·s + (W_slow ⊙ I)·(0.3 ⊙ tanh(s))
# Step 2: State update
s ← s + Δt ⊙ [(-s + I_syn + I_ext) ⊘ τ]
# Step 3: Modulatory interventions
for each unit:
detect Möbius signatures
apply interventions based on intervention_type
# Step 4: Periodic learning
if t mod 10 = 0:
update W_fast via Hebbian rule
# Step 5: Sovereignty validation
compute B, V, D
record sovereignty status8. Initialization Parameters
8.1 Neuron Parameters
s_i(0) ∼ N(0, 0.2)
τ_i ∼ Uniform(τ_min, τ_max) = Uniform(5.0, 15.0)
θ_excite_i ∼ Uniform(0.2, 0.4)
θ_inhibit_i ∼ Uniform(-0.3, -0.1)
health_i(0) = 1.08.2 Network Parameters
n = 512neuronsm = 16modulatory unitsp = 0.3connection sparsityΔt = 0.1time stepLearning:
η = 0.01, update probability = 0.05
9. External Stimulation Model
With probability p_stim = 0.3:
k = ⌊n/20⌋ # ~5% of neurons
indices ∼ RandomSubset({1,...,n}, size=k)
I_ext[indices] ∼ N(0, 0.4)
I_ext[others] = 010. Performance Metrics
10.1 Intervention Statistics
Let N_type = count of interventions of given type:
Total interventions:
N_total = Σ_type N_typeType distribution:
p_type = N_type / N_total
10.2 Health Statistics
μ_health = (1/n) * Σ_i health_i
σ_health = √[Σ_i (health_i - μ_health)² / (n-1)]10.3 Sovereignty Metrics
Sovereignty percentage:
S_% = (100/T) * Σ_t [sovereign(t)]11. Mathematical Properties
11.1 Stability Analysis
The linearized system around equilibrium s*:
J = diag(-1/τ) + (W_fast ⊙ I)/τStability requires eigenvalues of J to have negative real parts.
11.2 Energy Function
Potential energy of the network:
E(s) = (1/2) s^T s - s^T (I_syn + I_ext) + Σ_i τ_i ∫_0^{s_i} tanh^{-1}(u/0.3) du11.3 Information Theoretic Measures
Entropy of trinary states:
H(T) = -Σ_{x∈{-1,0,1}} p(x) log₂ p(x)where p(x) = (1/n) Σ_i [T_i = x]
12. Convergence Criteria
The system reaches steady state when:
max_i |Δs_i/Δt| < ε and max_i flip_rate_i < δTypical values: ε = 0.001, δ = 0.01
13. Scaling Laws
13.1 Computational Complexity
Matrix multiplication:
O(n²)per stepHebbian update:
O(n²)every 10 stepsIntervention computation:
O(n)per modulatory unitTotal per step:
O(n² + m·n)
13.2 Memory Requirements
Weight matrices:
3 × n² × 4 bytes(single precision)Neuron states:
n × 4 bytesHistory buffers:
100 × n × 4 bytesTotal:
~12n² + 404nbytes
For n = 512: ~3.2MB
14. Theoretical Foundations
The Trinity Framework implements:
Leaky Integrate-and-Fire dynamics without explicit spike generation
Adaptive threshold homeostasis via modulatory feedback
Sparse Hebbian plasticity with synaptic integrity
Distributed monitoring through modulatory units
Multi-scale validation via boundary integrity metrics
This mathematical formulation provides complete specification for implementation, analysis, and extension of the Trinity Framework.
Until next time, TTFN.


